当前位置: 首页 > 土豆饼的做法 > 正文内容

高二数学下学期内容

作者: 湘鄂情菜谱   来源湘鄂情菜谱    发布时间2019-03-17

  学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是学习啦小编为大家整理的高二数学下学期复习知识点,希望对大家有所帮助!

  一、直线与圆:

  1、直线的倾斜角 的范围是

  在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

  过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

  3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

  ⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为

  4、 , ,① ∥ , ; ② .

  直线 与直线 的位置关系:

  (1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0

  5、点 到直线 的距离公式 ;

  两条平行线 与 的距离是

  6、圆的标准方程: .⑵圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离  ② 相切  ③ 相交

癫痫病什么药治疗最好  9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长

  二、圆锥曲线方程:

  1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;

  2、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线 或 c2=a2+b2

  3、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p;

  4、直线被圆锥曲线截得的弦长公式:

  5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .

  2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即

  3、模的计算:|a|= . 算模可以先算向量的平方

  4、向量的运算过程中完全平方公式等照样适用:

  三、直线、平面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴 o'x'、o'y'、使∠x'o'y'=45°(或135° ); (2)平行于x轴的线段长不变,平行于癫痫病幼儿医院y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h

  ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:

  ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:①表面积:S= ;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行 线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直 线面垂直 面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

  ⑵直线与平面所成的角:直线与射影所成的角

  四、导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

  1、导数的定义: 在点 处的导数记作 .

  2. 导数的几何物理意义:曲线 在点 处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。

  3.常见函数的导数公式: ① ;② ;③ ;

  ⑤ ;⑥济南癫痫医院那家最好 ;⑦ ;⑧ 。

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

  注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

  (2)求极值的步骤:

  ①求导数 ;

  ②求方程 的根;

  ③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

  (3)求可导函数最大值与最小值的步骤:

  ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

  五、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假

  假 真 假 真 真

湖北看癫痫去哪家医院好

  假 假 假 假 真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

  全称命题p: ; 全称命题p的否定 p:。

  特称命题p: ; 特称命题p的否定 p:

看过" 高二数学下学期内容 "的还看了:

1.

2.

3.

栏目热点